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I - RESEARCH SUMMARY

During the last year significant results have been obtained in a variety of
problems. Here we give a brief description of these results and, under separate

cover, we remit some preprints wherein details may be found.

FINITE ELEMENT METHODS FOR THE LADYZHENSKAYA MODEL OF VISCOUS FLOW ' -
J

The Navier-Stokes equstions are the most commonly used mathematical model
describing the motion of viscous incompressible fluids. Although this model is
zenerally accepted and is even thought by many to be valid for turbulent flows,
it does have some shortcomings. Of the latter, the most important one is that
1t is not known and not believed that solutions are globally, in time, unique.

Among the other models proposed for viscous incompressible flows is the one

of Ladvzhenskaya. Her model differs from the Navier-Stokes model only in the
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Q constitutive equation used. Whereas for the Navier-Stokes equations one uses a

linear constitutive model, Ladyzhenskava introduces a nonlinear one. One

~

.l

- advantage of her model is that one can show, in both 2-D and 3-D, that
o

N solutions are globally unique in time.

¢ For the stationary «case, the Ladyzhenskaya equations are given by
N

p

N

]

5 divu = 0

I and

~ | . T

" —dlv[A(u)(gradu + (gradu) )} + u-gradu + gradp = f

: on some domain  and where u is the velocity, p the pressure, f the given body
"
RS

- force and
-

5 Atv) =y +y IviP2 | po2

: 0 1

L

v

D The Navier-Stokes model corresponds to 71=0 (or p=2). Ladyzhenskaya herself
f has shown that these equations, with suitable boundary conditions, alwayvs have
;2 a solution. She did not explore the uniqueness question with respect to the
e stationary equations. It is well known that one can show that the Navier-
. Stokes equations have a unique solution whenever
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. where N is a constant such that

' f wegraduev s N'u', vi w'  for all u,v,weH ().
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LY For the Ladyzhenskaya equations we have obtained an improved uniqueness
» condition in the sense that her equations can be shown to have a unique
'

; solution for "larger" values of the data f.

k We have also studied the finite element approximation of the Ladyzhenskaya
; model. We have shown that one may use the same finite element spaces for the
E velocity and pressure as are used for Navier-Stokes calculations. Furthermore,
A we have obtained error estimates for the finite element solution which are
) identical, with respect to the rate of convergence, as those available for
E finite element approximations of the Navier-Stokes equations.

. At this time we are writing a code to implement some finite element methods

for the Ladvzhenskava model. The main goals of these computations are to see

% what effect her model has on actual solutions, as well as to study hov one may
. implement finite element methods and solution algorithms for that model. Once
; the computations have been carried out, a paper will be written concerning both
2 the theoretical and computational results.

.

E SURVEY OF FINITE ELEMENT METHODS FOR INCOMPRES{IBLE VISCOUS FLOWS‘/ S " f
~ Over the past few years, mainly with support from AFOSR, we have been
: involved in wvarious aspects of research 1in finite element methods for
: incompressible viscous flows. As a result of an invitation to give a survey
b lecture on this subject at a Finite Element Workshop held at ICASE, we prepared
ij a survey paper. This paper collects many important algorithmic and mathematical
'
¥ results obtained by us, our colleagues, and the finite element community as a
M) whole. A copy of this paper 1is enclosed and vill appear in a Workshop
f Proceedings which is to be published by Springer.
! »
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We feel that this paper is not of sufficient length to adequatedly cover
the many aspects of the subject considered. Therefore we are presently
rewriting and expanding the paper so that it will result in a valuable survey
of algorithms and the analysis of algorithms for the Navier-Stokes equations.
Our aim is to have it published by A344# Review, or, if its length and scope

warrant it, as a book, perhaps in a SIAM or Springer series.

FINITE ELEMENT METHODS FOR HYPERBOLIC EQUATIONS

We have studied various finite element methods for first order hyperbolic
systems of differential equations. First we consider equtions of the positive
svmetric type, i.e., of the Friedrichs type. Such equations arise in most
applications, e.g., fluid mechanics and electromagnetics. Standard finite
element methods for these type equations are not optimally accurate in the
sense that the error in the finite element approximation does not converge at
the same rate as the error in the best approximation to the solution of the
differential equation in the finite element spaces employed. We study a

nonstandard finite element method which yields optimal accuarcy in the H! norm

and, for sufficiently regular solutions, in the L? norm as well. The method may

he viewed as a combined Galerkin and least squares method.

If we denote the hyperbolic system by

for sone unknown function u, the method is based on the weak formulation
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vhere Lo(-) is operator related to the principal part of Lt«), 6 1is a
' parameter related to the grid size, and the test functions v can be chosen in

the same space in which the solution u is sought. We show that with the proper

S choice of the parameter &6 that the optimal estimates mentioned above are
obtained.

- Another aspect of this research is based on our work and thtiose of others on
E first order elliptic systems of differential equations. These methods do not
[ v
;; apply to general hyperbolic syvstems, but fortunately are useful in many
; applications, e.g., again, fluid mechanics and electromzgnetics. Using the work
E on elliptic differential equations, a suitable projection, onto the finite

element space, of the solution of the hyperbolic system is defined, and the
error in this projection estimated. This projection is then used to obtain

analagous estimates for the error in the finite element approximation of the

X 8 8 8 X 02

solution of the hyperbolic equations.

>, WORK OF WILLIAM LAYTON SUPFPORTED IN PART BY THE GRANT

;

X During the past vear the Grant has provided partial support for Professor
William Layton of the Georgia Institute of Technology during his visit to

§ Carnegie-Mellon University. We now give a brief account of some of his work

;: which was partially supported by the grant.

\ One subject of interest to Layton is the approximation of singularly

‘3 perturbed problems. For example he has studied nonstandard defect correction

"G

f: methods  applied to convection-diffusion problems with dominant convection
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terms. It is shown that these methods converge uniformly in the viscosity

parameter an with optimal rates, outside of boundary layers. Numerical codes
hlave been written implementing the method for 1-D an 2-D problems. Another
aspect of this research is the approximation of the derivatives of the solution
of singularly perturbed two~point boundary problems. It is shown that outside
boundary layers certain difference quotients of a computed approximation to the
solution give optimal approximations to the derivative of the solution,
uniformly in the viscosity parameter. By looking at stretched variables, an
accurate formula for approximating the derivative within the boundary layer is
z1s0 provided.

Another research project was concerned with the approximation of solutions
of second order elliptic differential equations. For example, it is shown that
standard central difference discretizations of 1linear second order elliptic
equations without lower order terms are of monotone type, although not
necessarily positive. Consequently, a maximum principle holds. Another aspect
of this research concerns itself with Galerkin approximations to the solution

of semilinear elliptic equtions of the tvpe

Lu = f(u)

wvhere L is a linear second order elliptic operator. Optimal error estimates are

obtained whenever df/du is bounded inside the resolvent set of L.




II - PERSONNEL SUPPORTED BY THE GRANT

1. Max Gunzburger, Professor of Mathematics; 3 summer months; Principal

o

investigator.

2. William Layton, Visiting Associate Professor; partial academic year support.

3. Qiang Du and Amnon Meir, Graduate Students; summer support and partial

academic year support.

IIT - PUBLICATIONS RELEVANT TO THE GRANT

1. Finite element approximations for first order elliptic systems in three

dimensions; preprint enclosed; (C. Chang and M. Gunzburger).

2. Finite element methods for the Ladyzhenskaya model of incompressible viscous

flows; in preparation; (Q. Du and M. Gunzburger).

3. Nonstandard finite element methods for hyperbeolic systems; in preparation;

(Q. Du, M. Cunzburger and W. Layton).

4. Mathematical aspects of finite element methods for incompressible viscous
flow problems; to apnpear in the Proceedings of the ICASE Workshop on Finite
Element Methods, to be published by Springer; (M. Gunzburger). Preprint

enclosed.
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5. A study of defect-correction, finite difference methods for convection

diffusion equations; preprint enclosed; (V. Ervin and W. Layton).

6. On the approximation of the derivatives of singularly perturbed boundary

value problems; preprint enclosed; (V. Ervin and W. Layton).

7. On central difference approximations to general second order elliptic

equations; preprint enclosed; (W. Layton).

8. L%-estimates for Galerkin methods for semilinear elliptic equations;

preprint enclosed; (E. Harrell and W. Layton).

9. A gpuide to finite element methods for incompressible viscous flows; 1in
preparation; and expanded version of 3 which will be submitted as a revies

article to a major journal or be published as monograph; (M. Gunzburger).
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